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ABSTRACT: The reaction of 2,2′-bipyridine (bpy) with
monomeric chromium(II) precursors was used to prepare
the S = 1 complexes Cr(tBu-acac)2(bpy) (1) and (η5-
Cp)(η1-Cp)Cr(bpy) (3), as well as the S = 2 compound
Cr[N(SiMe3)2]2(bpy) (4). The crystallographically deter-
mined bond lengths indicate that the bpy ligands in 1 and
3 are best regarded as radical anions, while 4 shows no
structural evidence for electron transfer from CrII to the
neutral bpy ligand.

Over the past 15 years, several remarkably effective first-row
transition-metal catalysts have employed chelating ancil-

lary ligands with conjugated pyridine and/or imine donors.1

While the ability of diimine-based ligands to accept an electron to
form anionic ligand radicals has long been recognized,2 the
connection between the electronic structure and reactivity
remains to be fully understood.3 Substituted 2,2′-bipyridine
(bpy) ligands have been used in situ to generate first-row metal
catalysts for organic synthesis.4 However, compared to
pyridinediimine and related tridentate ligands,5 general synthetic
methods to prepare well-defined complexes with only a single
bidentate redox-active diimine ligand have yet to be developed.
In this paper, we report new chromium(III) complexes with

radical-anionic ligands prepared by the addition of neutral bpy to
known monomeric chromium(II) precursors. This synthetic
strategy, previously employed by Theopold, Wieghardt, and Mu
with diimine ligands and CrCl2,

6−8 relies on the characteristic
single-electron-transfer reactivity9 of CrII to produce inert
octahedral chromium(III) complexes antiferromagnetically
coupled to the ligand-based radical. Recent studies by Wieghardt
and co-workers have demonstrated the ubiquity of these
interactions in what were previously considered to be low-spin
chromium(II) complexes7 and the remarkable correlation
between the crystallographically determined Cpy−Cpy bond
length and the bpy oxidation level revealed through detailed
spectroscopic, magnetic, and computational studies.10 Interest-
ingly, we have found that electron transfer to the bpy lowest
unoccupied molecular orbital (LUMO) π* is dictated not only
by the reducing ability of the CrII d4 precursor but also by the
geometry of the product.
As shown in Scheme 1, our synthesis employed Cr(tBu-acac)2

(tBu-acac = 2,2,6,6-tetramethylheptane-3,5-dionate) because it is
soluble in Et2O or hydrocarbon solvents,11 unlike the polymeric
Cr(acac)2.

12 The reaction of Cr(tBu-acac)2 with bpy results in a

rapid color change from light orange-brown to dark green.
Isolated Cr(tBu-acac)2(bpy) (1) has μeff = 2.74 μB in solution
(Evans, C6D6), consistent with an electronic structure with S = 1.
The UV−vis spectrum of 1 has multiple intense features between
700 and 400 nm, with ε values ranging from 2000 to 4500 M−1

cm−1. The corresponding Cr(tBu-acac)2(tBu-bpy) complex, 1a,
was also prepared by the same procedure using 4,4′-di-tert-butyl-
2,2′-bipyridine (tBu-bpy). A related Cr(acac)2(diimine) complex
was reported by Wieghardt and co-workers.13

Both 1 and 1a have been characterized by single-crystal X-ray
diffraction (Figure 1). In both structures, the Cr center displays a

relatively undistorted geometry, with Cr−O bond lengths
between 1.962 and 1.976 Å and Cr−N bond lengths of
2.0015(10) Å for 1 and 1.9883(14) and 1.9927(13) Å for 1a.
The interpyridine C−C distances of 1.427(2) Å for 1 and
1.419(2) Å for 1a lie in the range exhibited for bpy ligands that
have been reduced by a single electron.10 In the absence of
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Scheme 1. Synthesis of a Neutral tBu-acac Complex 1

Figure 1. Thermal ellipsoid diagrams (50%) of 1 (left) and 1a (right).
All H atoms have been omitted for clarity.
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detailed spectroscopic, magnetic, and computational studies, the
precise electronic structures of 1 and 1a cannot be definitively
assigned. Nevertheless, the crystallographic data suggest that the
bpy ligands in both 1 and 1a can be considered as radical anions,
with the observed S = 1 spin state being attributable to
antiferromagnetic coupling between the ligand-based radical and
the three unpaired electrons of the CrIII center.
Single-electron oxidation of 1 with iodine followed by anion

metathesis with NaBPh4 gives the cationic complex [Cr(tBu-
acac)2(bpy)][BPh4] (2). The UV−vis spectrum of 2 displays
only a single band at 550 nm in EtOH with a greatly reduced
extinction coefficient of 90 M−1 cm−1, and its μeff = 3.88 μB in
solution (Evans, C6D6) is consistent with a S = 3/2 spin state.
Complex 2 can also be independently synthesized via [Cr(tBu-
acac)2(H2O)2]

+ following the procedure of Kaizaki and co-
workers.14 The molecular structure of 2 was determined
crystallographically (see the Supporting Information, SI). The
coordination geometry at Cr remains octahedral, with the
somewhat shorter Cr−O bond lengths between 1.925 and 1.948
Å being attributable to a change in the overall charge from neutral
1 to cationic 2. Significantly, the Cr−N bond lengths of
2.0683(10) and 2.0664(11) Å in 2 are longer than those in 1, and
the Cpy−Cpy bond length has extended by over 0.05 Å to
1.4787(17) Å, consistent with oxidation of the bpy ligand from a
radical anion to neutral.10

The similarity in the coordination geometry at CrIII between
neutral 1 and cationic 2 should facilitate outer-sphere single-
electron-transfer reactions. Consistent with this expectation,
cyclic voltammetry (CV) of cationic 2 in tetrahydrofuran
(THF)/0.1 M [NBu4][PF6] shows a reversible reduction at
−1.53 V versus [Cp2Fe]

+/0. UV−vis spectroelectrochemistry
demonstrates that the reduction of 2 results in the clean
formation of 1. A second reversible reduction at −2.63 V versus
[Cp2Fe]

+/0 may be due to a further reduction of 1 to anionic
[Cr(tBu-acac)2(bpy)]

−, although we have not yet been able to
prepare this complex synthetically. Complex 1 also reacts rapidly
with Ph3CBr to give [Cr(tBu-acac)2(bpy)]

+ and trityl radical,15

as identified by UV−vis spectroscopy (see the SI).
The direct addition of bpy to chromocene at room

temperature generates Cp2Cr(bpy) (3). Unlike its highly reactive
heavier group 6 congeners, chromocene typically only forms
weak bonds with neutral donor ligands because of the relative
stability of the S = 1 state for Cp2Cr.

16 The stability of 3 can be
attributed to single electron transfer from CrII to bpy to generate
an inert chromium(III) complex antiferromagnetically coupled
to a bpy radical anion while retaining the S = 1 state with μeff =
2.92 μB in solution (Evans, C6D6). As shown in Figure 2, complex

3 has an (η5-Cp)(η1-Cp)Cr(bpy) structure17 with short Cpy−Cpy
[1.425(2) Å] and Cr−N [1.9825(13) Å and 1.9684(12) Å] bond
lengths consistent with the bpy ligand in the radical-anionic
oxidation level.10 The structure of 3 is similar to that of
Cp*Cr(bpy)(CH2Ph), an S = 1 complex prepared by Theopold
and co-workers by bpy-induced alkyl radical loss from
Cp*CrIII(benzyl)2 precursors.18 Although Cp2Cr typically
requires elevated temperatures for protonolysis reactions with
alcohols,19 3 reacts readily under ambient conditions with 2 equiv
of (tBu-acac)H to generate 1, as identified by UV−vis
spectroscopy.
The reaction of Cr[N(SiMe3)2]2(THF)2 with bpy results in

the dark-purple complex Cr[N(SiMe3)2]2(bpy) (4; Scheme 2),

which has two intense absorbances at 509 and 372 nm in Et2O,
each with ε≈ 1300M−1 cm−1.20 In contrast to the S = 1 spin state
observed for 1, 1a, and 3, complex 4 has μeff = 4.62 μB in solution
(Evans, C6D6) consistent with an S = 2 spin state. As shown in
Figure 2, 4 exhibits a distorted square-planar geometry in the
solid state, with Npy−Npy−NSi−NSi dihedral angles of 20.0° and
20.7° for the two independent molecules of 4 in the unit cell. The
relatively long Cpy−Cpy [1.481(3) Å and 1.485(3) Å] and Cr−
Npy (between 2.14 and 2.16 Å) distances are consistent with a
neutral bpy ligand.10 Like 3, the bis(amido)bipyridine complex 4
is also converted to 2 when treated with 2 equiv of (tBu-acac)H,
as demonstrated by UV−vis spectroscopy and CV (see the SI).
For 4, the absence of single electron transfer from CrII upon

bpy coordination can be accounted for using concepts from
ligand-field theory. Because of the steric bulk of the N(SiMe3)2
ligands, 4 is stable as a monomeric complex with a coordination
number of 4. This allows the compound to adopt the
electronically favorable (albeit sterically distorted) square-planar
geometry shown in Figure 2 while retaining a high-spin CrII S = 2
spin state.21 The same electronic structure is observed for
Cr(Mes)2(bpy), where Mes (mesityl) = 2,4,6-Me3C6H2, which
also has a slightly distorted square-planar geometry, an S = 2 spin
state, and a neutral bpy ligand.22 This is in contrast to octahedral
complexes such as 1, where electron transfer to the bpy LUMO
π* is energetically favorable compared to either the high-spin (S
= 2, t2g

3eg
1) or low-spin (S = 1, t2g

4eg
0) electron configurations for

CrII.6−8,23 Although both 4 and Cr(Mes)2(bpy) would be
expected to have very electron-rich CrII centers, neither complex
exhibits any structural evidence for bpy acting as a π-acceptor
ligand.
New paramagnetic chromium bipyridine complexes have been

prepared by the addition of the neutral ligand to well-defined
monomeric chromium(II) precursors. For Cr(tBu-acac)2 and
Cp2Cr, the S = 1 products 1 and 3 are best regarded not as low-
spin CrII but as CrIII antiferromagnetically coupled to an unpaired
electron on the bpy ligand.7,10 The geometry of the octahedral or
three-legged-piano-stool products appears to play a significant
role in electron transfer from CrII to bpy LUMO π*, as the four-
coordinate complex 4 remains S = 2, and displays the bond
lengths expected for a neutral bpy ligand. The protonolysis

Figure 2. Thermal ellipsoid diagrams (50%) of 3 (left) and 4 (right). All
H atoms have been omitted for clarity, and only one of the two
independent molecules present in the unit cell is shown for 4.

Scheme 2. Synthesis of 4
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reactions of 3, 4, and related complexes, as well as their outer-
sphere reactivity with organic halides,24 are currently under
investigation.
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